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Universal Amplitude Ratios in the Critical
Two-Dimensional Ising Model on a Torus
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Using results from conformal field theory, we compute several universal
amplitude ratios for the two-dimensional Ising model at criticality on a sym-
metric torus. These include the correlation-length ratio xC=limL � � !(L)�L
and the first four magnetization moment ratios V2n=(M2n)�(M2) n. As a
corollary we get the first four renormalized 2n-point coupling constants for the
massless theory on a symmetric torus, G*2n . We confirm these predictions by a
high-precision Monte Carlo simulation.

KEY WORDS: Ising model; universal amplitude ratios; conformal field
theory; torus; finite-size scaling; corrections to scaling; Monte Carlo; Swendsen�
Wang algorithm; cluster algorithm.

1. INTRODUCTION

A central concept in the theory of critical phenomena is the idea of univer-
sality, which states that phase-transition systems can be divided into a
relatively small number of ``universality classes'' (determined primarily
by the system's spatial dimensionality and the symmetries of its order
parameter) within which certain features of critical behavior are universal.
In the 1950s and 1960s it came to be understood that critical exponents are
universal in this sense.(1) Later, in the 1970s, it was learned that certain
dimensionless ratios of critical amplitudes are also universal.(2)
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The past quarter-century has seen enormous progress in the deter-
mination of critical exponents for a wide variety of universality classes,
including exact analytical results for two-dimensional (2D) models(3�6) and
increasingly precise numerical determinations for three-dimensional models
by a variety of techniques (field-theoretic renormalization group, (7, 8) series
extrapolation, (9�16) Monte Carlo(17�26)). As a result, attention has turned
quite naturally to universal amplitude ratios: these include amplitude ratios
in infinite volume and those in finite-size scaling (FSS). Though much
numerical work has been done, few exact results are known.3

The critical behavior of many 2D models can be studied analytically
using conformal field theory (CFT).(4�6) Many critical exponents have been
determined exactly, along with a few universal amplitude ratios.(52�63, 38)

The main goal of the present paper is to compute, using CFT, a few more
universal amplitude ratios for the 2D Ising model and to test these predic-
tions by a high-precision Monte Carlo study. The amplitude ratios con-
sidered here arise in finite-size scaling; they can be computed starting from
the correlation functions of the critical 2D Ising model on a torus.

The first class of quantities we study concern the shape of the magneti-
zation distribution \(M) at criticality on a symmetric torus (Lx=Ly).4 We
study the rescaled shape of this distribution (i.e., normalizing by its width
(M2) 1�2) as well as the dimensionless ratios of its moments,

V2n=
(M2n)
(M2) n (1.1)

We can also define the dimensionless cumulants

U2n#
(M2n) conn

(M2) n (1.2)
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3 Among the models studied are the 2D Ising model, (27�31) 2D nonlinear _-models, (32�36, 28, 29)

2D Potts models, (37, 38) the Baxter 8-vertex model, (39) 2D and 3D self-avoiding walks, (19) the
3D Ising model, (40�46, 20, 24�29, 31) 3D O(N ) spin models, (18, 47�50, 28, 29, 16) 3D site percola-
tion, (25) and the 5D Ising model.(51) This list of references is far from exhaustive.

4 One of the insights of conformal field theory is that universal finite-size-scaling properties
(such as the universal amplitude ratios considered here) ought to be studied as analytic func-
tions of the modular parameter { of the torus. Nevertheless, we think that the case of a sym-
metric torus ({=i) is of sufficient practical importance in Monte Carlo simulations to
warrant special attention.



For any symmetric distribution \(M)=\(&M) these satisfy5

U4=V4&3 (1.3a)

U6=V6&15V4+30 (1.3b)

U8=V8&28V6&35V 2
4+420V4&630 (1.3c)

U10=V10&45V8&210V4V6+1260V6+3150V 2
4&18900V4+22680 (1.3d)

b

Note that V4 and U4 are closely related to the so-called Binder cumulant(64)

U4, Binder#1&
(M4)

3(M2) 2=1&
V4

3
=&

U4

3
(1.4)

For ;<;c the ratios V2n tend in the infinite-volume limit to those charac-
teristic of a Gaussian distribution,

V2n(Gaussian)=(2n&1)!! (1.5a)

U2n(Gaussian)=0 (1.5b)

while for ;>;c they tend to those characteristic of a sum of two delta func-
tions,

V2n(two deltas)=1 (1.6a)

U2n(two deltas)=
22n&1(22n&1)

n
B2n (1.6b)

where B2n=(&1)n&1 (2n)! `(2n)�22n&1?2n is a Bernoulli number. At ;=;c ,
however, these ratios acquire non-trivial values in-between (1.5a) and
(1.6a).6 These values, which are universal, can in principle be computed by
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5 These relations can be computed from the generating functions

:

�

n=1

U2n

(2n)!
z2n=log \ :

�

n=0

V2n

(2n)!
z2n+

with V0=V2=1 and V2n+1=0.
6 The Schwarz inequality implies that V2n�1 for any model, and the Gaussian

inequality(65, 66) implies that V2n�(2n&1)!! for ferromagnetic Ising models. In particular, we
have &2�U4�0. Moreover, Newman (67) and Shlosman(68) have proven, for ferromagnetic
Ising models, that (&1)n&1 U2n�0 for all n; and Newman (67) has proven some additional
inequalities on the U2n .



integrating the spin correlators for the critical 2D Ising model on a torus,
which were determined by Di Francesco et al.(53, 54) using CFT. In practice,
however, the formula for V2n rapidly gets more complicated as n grows. Di
Francesco et al.(53, 54) computed V4 to roughly three decimal places by
Monte Carlo integration. Here we shall improve this result by three orders
of magnitude, and shall also compute V6 to five decimal places, V8 to
almost four decimal places, and V10 to three decimal places:

V4=1.1679229\0.0000047 (1.7)

V6=1.4556491\0.0000072 (1.8)

V8=1.89252\0.00018 (1.9)

V10=2.53956\0.00034 (1.10)

Finally, we shall measure the ratios V2n for 2�n�10 by Monte Carlo
simulation, with an accuracy that gradually deteriorates as n grows. For
n=2, 3, 4, 5 our Monte Carlo estimates agree well with the theoretical
predictions (but are of course less precise).

Another interesting quantity is the second-moment correlation length !.
It has a sensible definition in finite volume (see Section 3), and its expected
FSS behavior is

!tL[xC+AL&2+ } } } ] (1.11)

where the leading coefficient

xC= lim
L � �

!�L (1.12)

is universal.7, 8 Here we shall compute xC for the 2D Ising model at criti-
cality by numerically integrating the known spin correlators;(53, 54) we find

xC=0.9050488292\0.0000000004 (1.13)

Our Monte Carlo data confirm this prediction. To our knowledge, this is
the first exact determination of xC for any universality class. Monte Carlo
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7 The quantity xC also plays an important role in a recently developed method for extrapolat-
ing finite-volume Monte Carlo data to infinite volume.(69�72, 34)

8 An analogous situation holds in a cylindrical (L_�) geometry for the exponential correla-
tion length in the longitudinal direction, !exp (L) [which can be defined in terms of the
logarithm of the ratio of the two largest eigenvalues of the transfer matrix]. Privman and
Fisher(73) showed that limL � � !exp(L)�L at criticality is universal, and Cardy(74) showed
that for 2D conformal-invariant systems it is equal to 1�(?').



estimates of xC are available for many other 2D models��including the
3-state Potts model, (75) the 4-state Potts model, (76, 77) the 3-state square-
lattice Potts antiferromagnet, (78, 79) the XY model, (80) and several points on
the self-dual curve of the symmetric Ashkin�Teller model(76)��and it would
be very interesting to compute xC analytically for some of these models.
Numerical estimates of xC are also available for some three-dimensional
spin models.(18, 41, 47, 24)

Consider, finally, the dimensionless renormalized four-point coupling
constant

g4=&
u� 4

/2!d =&
U4

(!�L)d (1.14)

where u� 4 is the connected four-point function at zero momentum. In the
FSS limit L � �, ; � ;c with !�L fixed, g4 is a nontrivial function of the
FSS variable !�L:

g4=Fg4
(!�L) (1.15)

Therefore, the function g4(;, L) fails to be jointly continuous at
(;, L)=(;c , �); many limiting values are possible depending on the mode
of approach, and the massive and massless scaling limits

g4*= lim
; A ;c

lim
L � �

g4(;, L) (1.16)

G4*= lim
L � �

lim
; A ;c

g4(;, L)= lim
L � �

g4(;c , L) (1.17)

correspond to the two extreme cases g4*=Fg4
(0), G4*=Fg4

(xC). As a
corollary of our computation of V4 and xC, we obtain the value of g4 at
criticality on a symmetric torus:

G4*=&
U4

xC2=2.2366587\0.0000057 (1.18)

More generally, consider the dimensionless renormalized 2n-point
coupling constant

g2n=
/n1� 2n

!(n&1) d (1.19)
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where 1� 2n is the amputated one-particle-irreducible 2n-point function at
zero momentum.9 We can predict the next three renormalized coupling
constants at criticality on a symmetric torus:

G6*=&
U6&10U 2

4

xC4 =29.25457\0.00015 (1.20a)

G8*=&
U8&56U4U6+280U 3

4

xC6 =942.6095\0.0072 (1.20b)

G*10=&
U10&120U4U8&126U 2

6+4620U 2
4U6&15400U 4

4

xC8

=56110.24\0.56 (1.20c)

In addition, we shall provide Monte Carlo estimates of G*12 through G*20

[cf. (4.20) below].
This paper is organized as follows: In Section 2 we review the relevant

exact results available for the 2D Ising model at criticality on a torus, and
we compute (by numerical integration) the CFT prediction for the quan-
tities xC, V4 , V6 , V8 and V10 . In Section 3 we explain the Monte Carlo
algorithm we have used to simulate this model. In Section 4 we analyze our
numerical results for the static observables and compare them against the
available exact results. Finally, in Section 5 we present our final conclu-
sions and discuss prospects for future work. In Appendix A we explain how
we carried out the numerical integrations involved in computing xC, and in
Appendix B we summarize the definitions and principal properties of the
Jacobi theta functions.

2. THEORETICAL RESULTS

The universal amplitudes we consider in this paper (xC and V2n) can
be written in terms of integrals of the 2n-point spin correlation functions
of the the critical 2D Ising continuum field theory on a torus. These
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9 The 1� 2n are defined by the generating-function relation

:

�

n=1

1� 2n

(2n)!
,2n=sup

J _J,& :

�

n=1

u� 2n

(2n)!
J2n&

Recall that u� 2=/ and that u� 2n=L&d(M2n) conn .



correlators were obtained by Di Francesco et al.(53, 54) using an approach
based on conformal field theory. The result is10

(_z1
} } } _z2n

) =
�4

&=1 Z&(_z1
} } } _z2n

) &

�4
&=1 Z&

(2.1)

where

Z&=
|%&(0)|
2 |'|

(2.2)

and

Z2
&(_z1

} } } _z2n
) 2

&=
1

2n+2 |'|2 :

�j =j=0

=j=\1
} %& \�j =jzj

2 +}
2

`
i< j }

%1(zi&zj )
%$1(0) }

=i=j �2

(2.3a)

=
%$1(0)n�2

2n+2 |'|2 :

�j =j=0

=j=\1
} %& \�j =jzj

2 +}
2

`
i< j

|%1(zi&zj )| =i =j �2

(2.3b)

Here we have used the complex-number notation z=x1+ix2 ; %$1(0)r

2.8486946040 is the derivative of %1(z, {) with respect to z evaluated at
z=0 and {=i; and 'r0.7682254223 is the usual Dedekind function '({)
evaluated at {=i. Please note that %$1(0)=2?'3 [cf. (B.13)]. Note also that
the contribution of [=j ] to (2.3) is equal to that of [&=j ], so in the
numerical evaluation of this expression we need only take half the terms.
The expression (2.1) gives the FSS limit for the Ising-model correlation
functions at criticality: here zi denotes the position in lattice units divided
by the lattice linear size L.

Remark. Although the sector &=1 does not contribute to the parti-
tion function [since Z1t%1(0)=0], it does contribute to the correlation
functions [since Z1(_z1

} } } _z2n
) 1{0]. So this sector cannot simply be

discarded. See ref. 53 for details.
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10 There is a misprint in the normalization of the 4-spin correlator in equation (9) of ref. 54,
and in the normalization of the 2n-spin correlator in equation (6.6) of ref. 53. We have
rederived both correlators using the chiral bosonization prescription presented in ref. 53.
With the correct normalization, shown in (2.1)�(2.3) below, we are able to reproduce the
numerical value of V4 reported in ref. 54, as well as the numerical estimates of V4 , V6 , V8

and V10 obtained in our simulation.



The two correlators that are needed in the evaluation of the Binder
cumulant are

Z&(_z1
_z2

) &=
|%$1(0)|1�4

2 |'|
|%&((z1&z2)�2)|
|%1(z1&z2)|1�4 (2.4)

Z&(_z1
_z2

_z3
_z4

) &=
|%$1(0)|1�2

2 - 2 |'| {}%& \z1+z2&z3&z4

2 +}
2

_} %1(z1&z2) %1(z3&z4)
%1(z1&z3) %1(z1&z4) %1(z2&z3) %1(z2&z4) }

1�2

+(2 W 3)+(2 W 4)=
1�2

(2.5)

We also need the 6-point correlator to compute V6 . Its exact expression
can be deduced easily from the general equation (2.3):

Z&(_z1
_z2

_z3
_z4

_z5
_z6

) &

=
|%$1(0)|3�4

4 |'| {}%& \z1+z2+z3&z4&z5&z6

2 +}
2

_9(z1 , z2 , z3 , z4 , z5 , z6)+(2 W 4)+(2 W 5)+(2 W 6)

+(3 W 4)+(3 W 5)+(3 W 6)+(2 W 4; 3 W 5)

+(2 W 4; 3 W 6)+(2 W 5; 3 W 6)=
1�2

(2.6)

where the function 9 is defined as

9(z1 , z2 , z3 , z4 , z5 , z6)=\%1(z12) %1(z13) %1(z23) %1(z45) %1(z46) %1(z56)
> i=1, 2, 3; j=4, 5, 6 %1(zij ) +

1�2

(2.7)

and we have used the shorthand notation zij#zi&zj .
From these equations we can obtain the values of xC=limL � � !�L

and V2n by numerical integration. In particular, the correlation length on
a periodic lattice of size L is defined to be

!=
1

2 sin(?�L) \
/
F

&1+
1�2

(2.8)
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where / is the susceptibility (i.e., the Fourier-transformed two-point
correlation function at zero momentum) and F is the corresponding quan-
tity at the smallest nonzero momentum (2?�L, 0) [see (3.7)�(3.9) and
(3.14)�(3.17) below for details]. This is a finite-lattice generalization of the
second-moment correlation length. Then, the universal amplitude xC is
given by

xC=
1

2? \
/
F

&1+
1�2

(2.9)

where

/t| d 2z (_0_z) (2.10)

Ft| d 2z (_0 _z) cos(2?x1) (2.11)

and � d 2z=�1
0 �1

0 dx1 dx2 . The details of this computation are given in
Appendix A. We obtain

| d 2z (_0 _z) =1.55243295465\0.00000000004 (2.12)

| d 2z (_0 _z) cos(2?x1)=0.04656744682\0.00000000004 (2.13)

As a result, we obtain xC with 10 digits of precision:

xC=0.9050488292\0.0000000004 (2.14)

We repeated the computation requiring 11 digits of precision in the
integrals, and the result was the same.

The universal moment ratio V4 is given by

V4=
� d 2z2 d 2z3 d 2z4 (_0_z2

_z3
_z4

)

[� d 2z (_0_z)]2 (2.15)

Di Francesco et al.(53, 54) performed the integrals in numerator and deno-
minator by Monte Carlo and obtained

V4=1.168\0.005 (2.16)
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We have improved this value, as follows: For the denominator of (2.15),
we use the very precise estimate (2.12) coming from deterministic numerical
integration. For the numerator, we performed a Monte Carlo integration
using 109 measurements. Our result is

V4=1.1679229\0.0000047 (2.17)

which is compatible with (2.16) but three orders of magnitude more
precise. This value also agrees closely with the estimate of Kamieniarz and
Blo� te(81) based on extrapolation of the exact results (computed by transfer-
matrix methods) for L�17:

V4=1.1679296\0.0000014 (2.18)

where the error bar is of course somewhat subjective.11

More generally, the universal moment ratio V2n is given by

V2n=
� d 2z2 } } } d 2z2n (_0 _z2

} } } _z2n
)

[� d 2z (_0_z)]n (2.19)

We have been able to compute the (exact except for the numerical integra-
tion) values of the ratios V6 , V8 and V10 . We performed the integrals in the
numerator by Monte Carlo, using 109 measurements for V6 , 4_106

measurements for V8 and 2.5_106 measurements for V10 . We obtain

V6=1.4556491\0.0000072 (2.20)

V8=1.89252\0.00018 (2.21)

V10=2.53956\0.00034 (2.22)

In general, the formula for the 2n-point function contains (2n)!�[2(n !)2]
terms [this takes into account the [=j ] W [&=j ] symmetry], and this
grows asymptotically like 4n. Thus, in computing V4 (resp. V6 , V8 , V10) we
had to include 3 (resp. 10, 35, 126) terms, and the computation of V12

would require handling 462 terms. Moreover, the numerator has to be
integrated over a (4n&2)-dimensional torus. These facts make the high-
precision numerical integration of V2n extremely time-consuming as soon
as n becomes moderately large.
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11 Unfortunately, Kamieniarz and Blo� te (81) reported only meager details of the fits that led
to this extraordinarily precise estimate. That is a shame, as information on the presence
or absence of particular correction-to-scaling terms could be of considerable theoretical
interest.



Let us consider, finally, the dimensionless renormalized four-point
coupling constant g4 defined by

g4=&
u� 4

/2!d =&
U4

(!�L)d (2.23)

where u� 4 is the connected four-point function at zero momentum, and more
generally the dimensionless renormalized 2n-point coupling constant g2n

defined by

g2n=
/n1� 2n

!(n&1) d (2.24)

where 1� 2n is the amputated one-particle-irreducible 2n-point function at
zero momentum. In the FSS limit L � �, ; � ;c with !�L fixed, g2n

becomes a nontrivial function of the FSS variable !�L,

g2n=Fg2n
(!�L) (2.25)

(There is some evidence that Fg4
is a decreasing function of !�L.12) In par-

ticular, the massive and massless scaling limits

g*2n= lim
; A ;c

lim
L � �

g2n(;, L) (2.26)

G*2n= lim
L � �

lim
; A ;c

g2n(;, L)= lim
L � �

g2n(;c , L) (2.27)

correspond to the two extreme cases g*2n=Fg2n
(0), G*2n=Fg2n

(xC). The best
currently available estimates for the 2D Ising model are

14.694\0.002 by high-temperature expansion(84, 28)

14.66\0.42 by =-expansion(28)

g4*={15.50\0.84 by g-expansion(85) (2.28)
14.66\0.06 by expansion around d=0(86, 87)

14.7\0.2 by Monte Carlo(31)
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12 Baker and Kawashima(82) conjecture that g4(;, L) [resp. !(;, L)] is a decreasing [resp.
increasing] function of ; for each fixed L<�; these two facts, if true, would immediately
imply that Fg4

(!�L) is a decreasing function of its argument !�L. Numerical data for the
2D(41, 83) and 3D (41, 82) Ising models clearly support the Baker�Kawashima conjecture.



G4*=2.239\0.007 by Monte Carlo (31) (2.29)

794.1\0.6 by high-temperature expansion(27�29)

797\9 by =-expansion(28, 29)

g6*={792\40 by g-expansion with constrained g* (30)
4 (2.30)

691\29 by expansion around d=0(86, 87)

850\25 by Monte Carlo(31)

G6*=29.34\0.20 by Monte Carlo(31) (2.31)

(82.5\0.6)_103 by high-temperature expansion(28, 29)

g8*={(83.8\3.2)_103 by =-expansion(28, 29) (2.32)

(89\5)_103 by Monte Carlo(31)

G8*=947\10 by Monte Carlo (31) (2.33)

g*10={(12.8\0.7)_106

(8.0\1.4)_106

by high-temperature expansion(28, 29)

by =-expansion(28, 29) (2.34)

Our own Monte Carlo data, reported in Section 4.3, combined with the
theoretical value (2.14) for xC, improve (2.29)�(2.31)�(2.33) to G4*=2.23685\
0.00016, G6*=29.2602\0.0047 and G8*=942.91\0.25, respectively, and
also give values for G*10 through G*20 [see (4.20) and the footnote following
it]. From (2.14) and (2.17)�(2.22) we obtain the theoretical predictions

G4*=&
U4

xC2=2.2366587\0.0000057 (2.35a)

G6*=&
U6&10U 2

4

xC4 =29.25457\0.00015 (2.35b)

G8*=&
U8&56U4U6+280U 3

4

xC6 =942.6095\0.0072 (2.35c)

G*10=&
U10&120U4U8&126U 2

6+4620U 2
4U6&15400U 4

4

xC8

=56110.24\0.56 (2.35d)

The error bars in (2.35) are obtained by carefully propagating the statisti-
cal errors from the V2n [in which the errors are independent except for an
extremely small effect arising from the value of the denominator (2.12)] to
the U2n (in which the errors are correlated) and thence to the G*2n .
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3. NUMERICAL SIMULATIONS

We consider the two-dimensional nearest-neighbor Ising model on an
L_L square lattice with periodic boundary conditions, given by the
Hamiltonian

HIsing=&
;
2

:
(ij)

_i_ j (3.1a)

=&; :
(ij)

$_i, _j
+const (3.1b)

Note that we use throughout this paper a non-standard normalization
of ;, which is motivated by considering the Ising model as a special case
of the q-state Potts model; it differs by a factor of 2 from the usual Ising
normalization. In our normalization, the critical point is at

;c=log(1+- 2)r0.881373587 (3.2)

3.1. Observables to be Measured

We have performed simulations of this system using the Swendsen�
Wang algorithm.(88�90) In particular, we have measured the following basic
observables:

v the energy density (i.e., the number of unsatisfied bonds)

E# :
(xy)

(1&$_x, _y
) (3.3)

v the bond occupation

N# :
(xy)

nxy (3.4)

v the nearest-neighbor connectivity (which is an energy-like observ-
able(75))

E$# :
(xy)

#xy (3.5)
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where #xy equals 1 if both ends of the bond (xy) belong to the same
cluster, and 0 otherwise. More generally, the connectivity #ij can be defined
for an arbitrary pair i, j of sites:

#ij ([n])={1
0

if i is connected to j
if i is not connected to j

(3.6)

v the squared magnetization

M2=\:
x

_x+
2

(3.7a)

=
q

q&1
:
q

:=1
\:

x

$_x , : +
2

&
V 2

q&1
(3.7b)

where _x#e(_x) # Rq&1 is the Potts spin in the hypertetrahedral representa-
tion13 and V=L2 is the number of lattice sites

v powers of the squared magnetization

M2n=(M2)n (3.8)

v the square of the Fourier transform of the spin variable at the
smallest allowed non-zero momentum

F=
1
2 \}:x _xe2?ix1 �L }

2

+ }:x _xe2?ix2 �L }
2

+ (3.9a)

=
q

q&1
_

1
2

:
q

:=1
\}:x $_x , :e2?ix1 �L }

2

+ }:x $_x , :e2?ix2 �L }
2

+ (3.9b)

where (x1 , x2) are the Cartesian coordinates of point x. Note that F is
normalized to be comparable to its zero-momentum analogue M2.

v the mean-square and mean-fourth-power size of the clusters

S2=:
C

*(C)2 (3.10)

S4=:
C

*(C)4 (3.11)
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13 Let [e(:)]q
:=1 be unit vectors in Rq&1 satisfying e(:) } e(;)=(q$:;&1)�(q&1), and let _x#

e(_x). For q=2 this means _x=cos(?_x)=\1.



where the sum runs over all the clusters C of activated bonds and *(C)
is the number of sites in the cluster C.

From these observables we compute the following expectation values:

v the energy density E per spin

E=
1
V

(E) (3.12)

v the specific heat

CH=
1
V

var(E)#
1
V

[(E2)&(E) 2] (3.13)

v the magnetic susceptibility

/=
1
V

(M2) (3.14)

v the higher magnetization cumulants

u� 2n=
1
V

(M2n) conn (3.15)

v the magnetization moment ratios

V2n=
(M2n)
(M2) n (3.16)

v the correlation function at momentum (2?�L, 0)

F=
1
V

(F) (3.17)

v the second-moment correlation length

!=
1

2 sin(?�L) \
/
F

&1+
1�2

(3.18)

v the variant second-moment correlation length

!$=
L
2? \

/
F

&1+
1�2

(3.19)

which differs from ! only by correction-to-scaling terms of order L&2.
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Remarks. 1. Using the Fortuin�Kasteleyn identities, (90�93) it is not
difficult to show that

(N) = p(B&(E) ) (3.20)

(E) =
q

q&1
(B&(E$) ) (3.21)

(M2) =(S2) (3.22)

(M4) =
q+1
q&1

(S2
2)&

2
q&1

(S4) (3.23)

where p=1&e&; and B=2V is the number of bonds in the lattice. As a
check on the correctness of our simulations, we have tested these identities
to high precision, in the following way: Instead of comparing directly the
left and right sides of each equation, which are strongly positively
correlated in the Monte Carlo simulation, a more sensitive test is to define
new observables corresponding to the differences (i.e., N& p(B&E) and
so forth). Each such observable should have mean zero, and the error bars
on the sample mean can be estimated using the standard error analysis out-
lined below. The comparison to zero yields the following /2 values:

For (3.20): /2=10.23 (14 DF, level=750) (3.24)

For (3.21): /2=17.00 (14 DF, level=260) (3.25)

For (3.22): /2=9.93 (14 DF, level=770) (3.26)

For (3.23): /2=9.05 (14 DF, level=830) (3.27)

Here DF means the number of degrees of freedom, and ``level'' means the
confidence level of the fit (defined at the beginning of Section 4 below). The
agreement is excellent.

2. We also compared our data for V4 for L=4, 6, 8, 12, 16 with the
exact values computed by Kamieniarz and Blo� te(81) using transfer-matrix
methods. We get /2=5.14 (5 DF, level=400), indicating good agreement.

For each observable O discussed above we have measured its
autocorrelation functions in the Swendsen�Wang dynamics,

COO(t)=(OsOs+t) &(O) 2 (3.28)

\OO(t)=
COO(t)
COO(0)

(3.29)
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where the expectations are taken in equilibrium. From these functions we
have estimated the corresponding integrated autocorrelation time

{int, O= 1
2 :

�

t=&�

\OO(t) (3.30a)

= 1
2+ :

�

t=1

\OO(t) (3.30b)

by the methods of ref. 94, Appendix C, using a self-consistent truncation
window of width 6{int, O . This autocorrelation time is needed to compute
the correct error bar on the sample mean O� .

Remarks. 1. The error bar of the second-moment correlation
length is computed by considering the random variable

O$=
M2

+M2
&

F

+F

(3.31)

which automatically has zero mean. Then,

var(!� )1�2=
1

4 sin(?�L)
/
F \/

F
&1+

&1�2

var(O$)1�2 (3.32)

where !� denotes our Monte Carlo estimate of !. In practice, the values of
+M2 and +F are replaced by their corresponding sample means (which
should be computed first).

2. The error bar on the ratio V2n is computed in a similar fashion:

var(V� 2n)1�2=
(M2n)
(M2) n var(O"2n)1�2 (3.33)

where V� 2n denotes our Monte Carlo estimate of V2n , and the observable
O"2n is defined as

O"2n=
M2n

+M2n
&n

M2

+M2
+n&1 (3.34)

and has mean zero. Again, the mean values +M 2n and +M2 are replaced in
practice by their sample means.
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3. As a further check on the correctness of our simulations, we have
computed both sides of the identity

\NN(1)=1&
(1& p)(2&E )

pCH+(1& p)(2&E )
(3.35)

proven in [equation (7) of ref. 95] (see also ref. 75).14 This is a highly non-
trivial test, as it relates static quantities (energy and specific heat) to a
dynamic quantity (autocorrelation function of the bond occupation at time
lag 1). We have also checked with great accuracy the identities(75)

CEE(t)=
1
p2 CNN(t+1) (3.36)

\EE(t)=
\NN(t+1)

\NN(1)
(3.37)

CE$E$(t)=\ q
q&1+

2

CEE(t+1) (3.38)

\E$E$(t)=
\EE(t+1)

\EE(1)
(3.39)

3.2. Summary of the Simulations

We have run our Monte Carlo program on lattices with L ranging
from 4 to 512 (see Table 1). In all cases the initial configuration was ran-
dom, and for L�64 (resp. L�96) we discarded the first 5_104 (resp. 105)
iterations to allow the system to reach equilibrium; this discard interval is
in all cases greater than 104{int, E .15 The total number of iterations ranges
from 2.15_106 (L=4) to 8.2_106 (L=512), and is selected to be
approximately 106{ int, E . These statistics allow us to obtain a high accuracy
in our estimates of the static and dynamic quantities (error �0.170 and
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14 Please note that ref. 95 used a definition of energy that is slightly different from the one used
here: E(ref. 95)=(1�V )(�(xy) $_x, _y

) =2&E.
15 Such a discard interval might seem to be much larger than necessary: 102{int would usually

be more than enough. However, there is always the danger that the longest autocorrelation
time in the system may be much larger than the longest autocorrelation time that one has
measured, because one has failed to measure an observable having sufficiently strong over-
lap with the slowest mode. As an undoubtedly overly conservative precaution against the
possible (but unlikely) existence of such a (vastly) slower mode, we decided to discard up
to 20 of the entire run. This discard amounts to reducing the accuracy on our final
estimates by a mere 10.



Table I. Values of the Principal Static Observables for the 2D Ising Model at
Criticalitya

L MCS / F !

4 2.10 12.1825\ 0.0065 0.4047\0.0008 3.8146\0.0051
6 2.70 24.9443\ 0.0130 0.7728\0.0013 5.5927\0.0063
8 2.70 41.4214\ 0.0228 1.2523\0.0021 7.3998\0.0084

12 3.25 84.3329\ 0.0454 2.5330\0.0038 10.9783\0.0114
16 3.25 139.5946\ 0.0786 4.1824\0.0063 14.5832\0.0154
24 4.00 284.0239\ 0.1525 8.4942\0.0118 21.8170\0.0212
32 4.00 469.7765\ 0.2612 14.0882\0.0197 29.0118\0.0288
48 5.00 955.5980\ 0.4966 28.6641\0.0365 43.4737\0.0395
64 5.00 1580.9962\ 0.8442 47.3931\0.0610 57.9660\0.0535
96 6.40 3214.3979\ 1.5807 96.3939\0.1118 86.9125\0.0728

128 6.40 5322.9013\ 2.6899 159.2797\0.1869 116.0034\0.0990
192 7.10 10817.0940\ 5.3669 324.0912\0.3656 173.8830\0.1434
256 7.10 17898.9900\ 9.0732 536.0673\0.6115 231.8851\0.1940
512 8.10 60184.2200\29.9896 1804.1768\1.9639 463.5381\0.3745

a For each lattice size L we show the number of measurements (= Swendsen�Wang iterations
after the discard interval) in units of 106 (MCS), the susceptibility /, the Fourier-trans-
formed correlation function F=G� (2?�L, 0), and the second-moment correlation length !.

�0.510, respectively). The static data are displayed in Table 1 (/, F, !)
and Table 2 (the ratios V2n). The dynamic data will be reported elsewhere.

The CPU time required by our program is approximately 6.3 L2 +s
per iteration on a Linux Pentium machine running at 166 MHz. The total
CPU time used in the project was approximately 7.5 months on this
machine.

We have improved the precision of our analysis of the correlation
length ! by supplementing our own Monte Carlo data with comparable
data from Ballesteros et al.(96) They performed single-cluster(97) simulations
of the 2D site-diluted Ising model at various concentrations p. Their data
for p=1 (i.e., the usual Ising model) correspond to anywhere from 4_105

to 7_105 statistically independent measurements at each lattice size from
L=12 to L=512 (see Table 3). The statistical independence of two con-
secutive measurements was achieved by allowing 100 single-cluster moves
between them. Their error bars are slightly larger than ours. As a matter
of fact, their error bars _$(!) and our error bars _(!) satisfy approximately
the relation

_(!)
_$(!)

=�2{int, O$ N$
N

(3.40)
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Table II. Ratios V2n=(M 2n)�(M 2)n for the 2D Ising Model at Criticality as
a Function of the Lattice Size La

L V4 V6 V8 V10 V12

4 1.14827\0.00041 1.38285\0.00108 1.7100\0.0021 2.1505\0.0037 2.7358\0.0061
6 1.15753\0.00038 1.41690\0.00102 1.7941\0.0021 2.3258\0.0037 3.0687\0.0064
8 1.16042\0.00039 1.42853\0.00106 1.8247\0.0022 2.3930\0.0040 3.2026\0.0069

12 1.16460\0.00037 1.44302\0.00103 1.8600\0.0021 2.4675\0.0039 3.3481\0.0069
16 1.16586\0.00038 1.44774\0.00106 1.8721\0.0022 2.4942\0.0041 3.4020\0.0073
24 1.16672\0.00036 1.45126\0.00100 1.8815\0.0021 2.5151\0.0039 3.4447\0.0069
32 1.16756\0.00037 1.45400\0.00103 1.8880\0.0022 2.5288\0.0040 3.4717\0.0072
48 1.16769\0.00034 1.45475\0.00094 1.8903\0.0020 2.5342\0.0037 3.4830\0.0066
64 1.16777\0.00034 1.45494\0.00097 1.8907\0.0020 2.5353\0.0038 3.4854\0.0068
96 1.16769\0.00031 1.45493\0.00088 1.8910\0.0019 2.5363\0.0035 3.4880\0.0062

128 1.16763\0.00032 1.45469\0.00090 1.8904\0.0019 2.5351\0.0036 3.4857\0.0063
192 1.16764\0.00031 1.45474\0.00087 1.8906\0.0018 2.5356\0.0035 3.4871\0.0062
256 1.16777\0.00031 1.45514\0.00089 1.8914\0.0019 2.5371\0.0035 3.4895\0.0063
512 1.16782\0.00030 1.45526\0.00086 1.8917\0.0018 2.5376\0.0034 3.4906\0.0061
� 1.1679229(47) 1.4556491(72) 1.89252(18) 2.53956(34)

L V14 V16 V18 V20

4 3.509\0.010 4.527\0.015 5.866\0.022 7.626\0.033
6 4.105\0.010 5.551\0.017 7.575\0.027 10.414\0.042
8 4.356\0.012 6.006\0.019 8.374\0.031 11.791\0.049

12 4.628\0.012 6.496\0.020 9.241\0.033 13.300\0.054
16 4.731\0.012 6.688\0.021 9.589\0.035 13.921\0.058
24 4.814\0.012 6.843\0.020 9.874\0.034 14.436\0.057
32 4.864\0.012 6.936\0.021 10.040\0.036 14.732\0.060
48 4.887\0.012 6.979\0.020 10.123\0.033 14.883\0.056
64 4.892\0.012 6.990\0.020 10.143\0.034 14.922\0.058
96 4.898\0.011 7.001\0.019 10.165\0.031 14.965\0.053

128 4.894\0.011 6.995\0.019 10.154\0.032 14.947\0.054
192 4.897\0.011 7.001\0.018 10.166\0.031 14.970\0.053
256 4.901\0.011 7.006\0.019 10.175\0.032 14.982\0.054
512 4.903\0.011 7.011\0.018 10.183\0.031 14.997\0.052

a The row L=� shows the theoretical predictions (2.17)�(2.20)�(2.21)�(2.22) for V4 , V6 , V8

and V10 , respectively; they are exact except for a numerical integration, the error bars of
which are given in parentheses.

where N (resp. N$) is the number of measurements of our (resp. their)
work, and O is the observable (3.31) we used to compute the correct
correlation-length error bar. This supports the belief that their measure-
ments are indeed essentially independent and that their error bars are
correctly computed. Comparison of their raw data to ours at the eleven
overlapping L values yields /2=10.28 (11 DF, level=510). The two data
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Table III. Values of the Correlation Length ! for the 2D Ising
Model at ;=;c Obtained by Ballesteros et al.(96) a

L EIM !

12 0.4 10.976\0.015
16 0.4 14.575\0.019
24 0.6 21.791\0.026
32 0.4 29.089\0.038
48 0.6 43.448\0.043
64 0.6 57.877\0.056
96 0.6 86.87 \0.11

128 0.6 115.87 \0.12
192 0.5 174.06 \0.21
256 0.6 231.84 \0.31
512 0.7 464.8 \0.5

a For each lattice size L we also show the number of ``effectively inde-
pendent measurements'' in units of 106 (EIM).

Table IV. Values of the Correlation Length ! for the 2D Ising Model at ;=;c

Coming from Merging Our Data (see Table 1) with That of Ballesteros et al.(96)

(see Table 3)a

L ! !�L `$�L

4 3.8146\0.0051 0.95365\0.00128 0.85859\0.00115
6 5.5927\0.0063 0.93212\0.00105 0.89011\0.00100
8 7.3998\0.0084 0.92497\0.00105 0.90138\0.00102

12 10.9775\0.0091 0.91479\0.00076 0.90437\0.00075
16 14.5799\0.0120 0.91125\0.00075 0.90540\0.00074
24 21.8066\0.0164 0.90861\0.00068 0.90602\0.00068
32 29.0400\0.0230 0.90750\0.00072 0.90604\0.00072
48 43.4619\0.0291 0.90546\0.00061 0.90481\0.00061
64 57.9235\0.0387 0.90506\0.00060 0.90469\0.00060
96 86.8996\0.0607 0.90520\0.00063 0.90504\0.00063

128 115.9494\0.0764 0.90585\0.00060 0.90576\0.00060
192 173.9393\0.1184 0.90593\0.00062 0.90589\0.00062
256 231.8724\0.1645 0.90575\0.00064 0.90573\0.00064
512 463.9916\0.2997 0.90623\0.00059 0.90623\0.00059
� 0.9050488292 0.9050488292

a The second column shows the ratio !�L, and the last column shows the ratio ! $�L. The last
row (L=�) shows the theoretical prediction (2.14) for the infinite-volume limit of the ratios
!�L and ! $�L.
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sets are therefore compatible. The corresponding merged data are shown in
Table 4.

4. DATA ANALYSIS

For each quantity O, we carry out a variety of fits using the standard
weighted least-squares method. As a precaution against corrections to
scaling, we impose a lower cutoff L�Lmin on the data points admitted in
the fit, and we study systematically the effects of varying Lmin on the
estimated parameters and on the /2 value. In general, our preferred fit
corresponds to the smallest Lmin for which the goodness of fit is reasonable
(e.g., the confidence level16 is -10&200) and for which subsequent
increases in Lmin do not cause the /2 to drop vastly more than one unit per
degree of freedom (DF).

4.1. Corrections to Scaling

In the data analysis we should take into account the effect of correc-
tions to scaling in order to get reliable estimates of the physical quantities.
In particular, the value at criticality of any observable O(L) is typically
given for large L by

O(L)=AL pO(1+A$L&2+ } } } ) (4.1)

where pO is the critical exponent associated to the observable O, 2 is the
leading correction-to-scaling exponent, and the dots indicate higher-order
corrections.

In finite-size-scaling (FSS) theory(98) for systems with periodic bound-
ary conditions, three simplifying assumptions have frequently been made:

(a) The regular part of the free energy, freg , is independent of L(98)

(except possibly for terms that are exponentially small in L).

(b) The relations connecting the nonlinear scaling fields gt and gh to
the conventional thermodynamic parameters t#;c&; and h are inde-
pendent of L.(99)

(c) The scaling field gL associated to the lattice size equals L&1

exactly, with no corrections L&2, L&3,... .(98)
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16 ``Confidence level'' is the probability that /2 would exceed the observed value, assuming that
the underlying statistical model is correct. An unusually low confidence level (e.g., less than
50) thus suggests that the underlying statistical model is incorrect��the most likely cause
of which would be corrections to scaling.



Moreover, in the nearest-neighbor spin-1�2 2D Ising model, it has
further been assumed that

(d) There are no irrelevant operators.(100, 101)

This latter assumption has been confirmed numerically (in the infinite-
volume theory) through order t3, at least as regards the bulk behavior of
the susceptibility.(101) However, both numerical(102, 103) and theoretical(104)

evidence has recently emerged suggesting that irrelevant operators do con-
tribute to the susceptibility at order t4.

The absence of irrelevant operators implies that the corrections to
scaling in this model are due to the smooth but in general nonlinear con-
nection between the conventional thermodynamic parameters t and h and
the renormalization-group nonlinear scaling fields.(105, 106, 100, 101) Starting
from the FSS Ansatz for the Ising-model free energy and using the above
assumptions, it is possible to obtain a FSS expression for the usual observ-
ables at criticality as functions of the lattice size L.(107) In particular, the
leading correction term in the expansion of the susceptibility is the L-inde-
pendent term coming from the regular part of the free energy. This implies
that for this observable

2= 7
4 (4.2)

The same result is plausible for the observable F defined in (3.17); thus, we
expect 2=7�4 for the second-moment correlation lengths ! and !$ and the
corresponding amplitude xC. The expansion for the magnetization
cumulant u� 2n gives an exponent 2=1+#�&=11�4 (perhaps with a multi-
plicative logarithmic correction). Thus, we expect that the ratios V2n also
have a correction-to-scaling exponent given by (4.2) [due to the power of
the susceptibility appearing in its definition (1.1)]. For a more detailed
theoretical and numerical analysis of the corrections to scaling in this
model, see ref. 107.

4.2. Second-Moment Correlation Length

The second-moment correlation length ! and its variant !$ [cf. (3.18)�
(3.19)] are expected to behave as

{ !
!$==L p[xC+AL&2+ } } } ] (4.3)
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with p=1. We can estimate p by ignoring correction-to-scaling terms and
performing a simple power-law fit. We get

For !: p=0.99974\0.00036 (Lmin=32, /2=1.48, 6 DF, level=960)

(4.4)

For !$: p=1.00018\0.00036 (Lmin=32, /2=1.37, 6 DF, level=970)

(4.5)

The agreement with the theoretical prediction is excellent.
The value of the constant xC can be estimated most simply by fitting

the ratio !�L or !$�L to a constant, ignoring corrections to scaling. We get

For !: xC=0.90577\0.00028 (Lmin=32, /2=2.02, 7 DF, level=960)

(4.6)

For !$: xC=0.90557\0.00026 (Lmin=16, /2=2.73, 9 DF, level=970)

(4.7)

The estimate based on ! lies 2.6 standard deviations away from the value
xC

r0.90505 predicted by CFT [cf. (2.14)]. The estimate based on !$ is
slightly better: it lies two standard deviations away from the theoretical
prediction, and works also for smaller Lmin . Indeed, the corrections to
scaling in !$�L are negligible (compared to our statistical error) already for
L�16 (see the last column of Table 4).17 This fact makes it almost
hopeless to study corrections to FSS in !$.

If we fit ! to (4.3), keeping the first correction-to-scaling term and try-
ing to estimate simultaneously the three parameters xC, A and 2, a good
fit is obtained for Lmin=8:

xC=0.90546\0.00033 (4.8a)

A=0.75\0.30 (4.8b)

2=1.76\0.18 (4.8c)

with /2=2.97 (9 DF, level=970). The value of xC is again two standard
deviations away from the theoretical prediction (2.14). The estimate of 2
is very close to 7�4, and is only 1.4 standard deviations away from 2;

574 Salas and Sokal

17 Table 4 is based on merging our data with that of Ballesteros et al.;(96) but virtually identi-
cal results are obtained using our data alone.



but perhaps this estimate ought not be taken too seriously, as the correc-
tion-to-scaling amplitude is only 2.5 standard deviations away from zero
(a deviation that is, moreover, comparable to the discrepancy in xC). The
analogous fit for !$ is even more hopeless (the amplitude A is compatible
with zero within 0.7 standard deviations), so we omit the details. This
correction-to-scaling exponent 2r2 can be understood as arising simply
from the ratio !�!$#[(L�?) sin(?�L)]&1=1+(?2�6) L&2+ } } } . Indeed, if
we fit the data to the Ansatz !�L=xC+AL&2 we get for Lmin=8:

xC=0.90569\0.00027 (4.9a)

A=1.269\0.064 (4.9b)

with /2=4.56 (10 DF, level=920). Then, A�xC
r1.40, which is not far

from ?2�6r1.64.
We can improve the precision of our numerical estimates by using the

merged data of Table 4 (our data plus that of Ballesteros et al.(96)). The
simple power-law fit yields

For !: p=1.00047\0.00033 (Lmin=48, /2=0.86, 5 DF, level=970)

(4.10)

For !$: p=1.00074\0.00033 (Lmin=48, /2=0.82, 5 DF, level=980)

(4.11)

The fits to a constant give

For !: xC=0.90565\0.00023 (Lmin=48, /2=2.92, 6 DF, level=820)

(4.12)

For !$: xC=0.90555\0.00020 (Lmin=16, /2=6.99, 9 DF, level=640)

(4.13)

The three-parameter fit !�L=xC+AL&2 is good for Lmin=8:

xC=0.90552\0.00026 (4.14a)

A=0.86\0.29 (4.14b)

2=1.82\0.15 (4.14c)

with /2=7.57 (9 DF, level=580). The analogous fit with !$ yields a
correction-to-scaling amplitude compatible with zero within errors.
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In conclusion, one can extract accurate estimates of the critical expo-
nent p and the amplitude xC using our Monte Carlo data; the results agree
with the theoretical prediction (2.14) within two standard deviations. How-
ever, it is very difficult to estimate from our numerical data the correction-
to-scaling exponent (or the corresponding amplitude). Indeed, for !$ the
corrections to scaling are negligible (compared to our statistical error) for
L�16.

4.3. Magnetization Moment Ratios

If we study the magnetization distribution \(M) as L � � at fixed ;,
we expect three distinct behaviors depending on the value of ;:

(a) At ;<;c , we are in the high-temperature regime, where correla-
tions decay exponentially. A variant of there central limit theorem(108)

guarantees that the finite-L distributions will converge, after rescaling
by the factor - V/, to a Gaussian distribution of mean zero and unit
variance.18

(b) At ;>;c we are in the low-temperature regime, and the finite-L
distributions should converge, after rescaling by the factor VM0 (where M0

is the spontaneous magnetization), to the sum of two delta functions. There
are Gaussian fluctuations around these two delta functions, but their width
is much smaller, namely - V/0 , where /0 is the susceptibility in a pure
phase.

(c) At ;=;c [or more generally, at fixed value of the FSS variable
L1�&(;&;c)], the finite-L distributions will converge, after rescaling by the
factor - V/, to some non-Gaussian distribution characteristic of the critical
Ising model in a finite box. This distribution is not, to our knowledge,
known exactly.

We have computed the magnetization histograms at ;=;c for L=
4,..., 512. The sequence of histograms is expected to converge to a limiting
distribution when we normalize the magnetization by - V/ and normalize
the height of the bins so that the area enclosed by the histogram is 1. For
L-64 the histograms converge well to a limiting histogram (Fig. 1). For
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18 Previously this had been proven for finite subvolumes of an infinite system, (109, 110) by a
technique using the FKG inequalities. It has recently been proven by Newman(108) also for
finite systems with periodic or free boundary conditions, by a different (but simple and
elegant) method using the GKS, GHS and Simon-Lieb inequalities. We thank Professor
Newman for communicating to us this unpublished result, which we hope he will someday
publish.
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Fig. 1. Magnetization histogram of the 2D Ising model at ;=;c for L=256. This histogram
is normalized such that the area enclosed is equal to unity.

L�48 small corrections to scaling are observed: the peaks of the histogram
are slightly taller than in the limiting histogram. The limiting distribution
is symmetric and very strongly two-peaked (with maxima at M�- V/r

\1.11); clearly the 2D Ising model at criticality in a finite symmetric torus
is very far from Gaussian (e.g., we will find V4 much closer to 1 than to 3).

In order to characterize quantitatively this limiting distribution, we
have measured its moments (M2n) for n=1,..., 10 and have computed the
corresponding ratios V2n#(M2n)�(M2) n. We expect a behavior

V2n=V �
2n+B2nL&2+ } } } (4.15)

For each n, we have fitted our numerical data (Table 2) in two ways: a
one-parameter fit to a constant V2n=V �

2n (fits marked with a C on the
second column of Table 5) and a three-parameter fit to V2n=V �

2n+
B2n L&2 (fits marked P in Table 5).

As expected, the estimates of V �
2n lie in-between the values associated

to a Gaussian distribution (1.5) and those associated to a two-delta-func-
tion distribution (1.6). However, they are much closer to the latter values,
reflecting the strongly two-peaked shape of the magnetization distribution.
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Table V. Values of the Infinite-Volume-Limit Ratios V2n=(M 2n)�(M 2)n for
the 2D Ising Model at Criticalitya

2n Type V �
2n B 2 Lmin /2 DF level

4 C 1.16770 \0.00011 32 0.48 7 1000
P 1.16777 \0.00013 &0.477\0.228 2.007\0.223 8 1.53 9 1000
T 1.1679229\0.0000047

6 C 1.45484 \0.00032 32 1.09 7 990
P 1.45517 \0.00037 &1.387\0.476 1.901\0.160 8 1.66 9 1000
T 1.4556491\0.0000072

8 C 1.89090 \0.00071 48 0.48 6 1000
P 1.89163 \0.00079 &3.037\0.827 1.834\0.127 8 1.86 9 990
T 1.89252 \0.00018

10 C 2.53593 \0.00135 48 0.69 6 990
P 2.53769 \0.00151 &5.915\1.341 1.784\0.106 8 2.06 9 990
T 2.53956 \0.00034

12 C 3.48720 \0.00241 48 0.99 6 990
P 3.49106 \0.00273 &10.819\2.112 1.742\0.091 8 2.29 9 990

14 C 4.89621 \0.00418 48 1.37 6 970
P 4.90419 \0.00479 &19.019\3.264 1.705\0.080 8 2.56 9 980

16 C 6.99812 \0.00716 48 1.83 6 930
P 7.01407 \0.00827 &32.544\4.984 1.670\0.072 8 2.86 9 970

18 C 10.16503 \0.01303 64 0.97 5 970
P 10.19047 \0.01416 &54.624\7.553 1.635\0.065 8 3.23 9 950

20 C 14.96506 \0.02199 64 1.16 5 950
P 15.01380 \0.02411 &90.377\11.374 1.601\0.059 8 3.69 9 930

a For each n we show the results of two different types of fits: to a constant V2n=V �
2n (C),

and to a constant plus a power-law correction-to-scaling term V2n=V �
2n+B2nL&2 (P).

We also show, for comparison, the theoretical prediction (T) for 2n=4, 6, 8, 10. The
values of Lmin , /2, the number of degrees of freedom (DF) and the confidence level are also
shown.

The fits to a constant are excellent for Lmin -32&64; for 2n=
4, 6, 8, 10 the estimates of V �

2n agree with the theoretical predictions within
about 2.5 standard deviations. The three-parameter fits are excellent
already for Lmin=8: the correction-to-scaling amplitude B2n grows in
magnitude with n, while the values of the correction-to-scaling exponent 2
are quite stable and are consistent with the theoretical prediction
2=#�&=7�4 [cf. (4.2)] within two standard deviations.

Let us now look more closely at V4 . With the three-parameter fit, we
obtain for Lmin=8:
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V �
4 =1.16777\0.00013 (4.16a)

2=2.01\0.22 (4.16b)

B4=&0.48\0.23 (4.16c)

with /2=1.53 (9 DF, level = 1000). The estimate of V �
4 is about one

standard deviation away from the theoretical prediction V �
4 r1.16792

[cf. (2.17)]. The estimate of 2 is reasonably close to 2=7�4; but since the
estimated correction amplitude B4 is only 2 standard deviations away from
zero, this estimate of 2 should perhaps not be taken too seriously.

Similarly, the estimates

V �
6 =1.45517\0.00037 (4.17)

V �
8 =1.89163\0.00079 (4.18)

V �
10=2.5377\0.0015 (4.19)

from the three-parameter fit are compatible with the predicted exact values
(2.20)�(2.21)�(2.22) within 1.5, 1.3 and 1.2 standard deviations, respectively.
The estimates of the exponent 2 (1.90\0.16, 1.83\0.13 and 1.78\0.11,
respectively) are compatible with 7�4.

The values of the first nine dimensionless renormalized 2n-point coupl-
ing constants at criticality on a symmetric torus can be obtained from the
results contained in Table 5:

G4*=2.23685\0.00016 (4.20a)

G6*=29.2602\0.0047 (4.20b)

G8*=942.91\0.25 (4.20c)

G*10=(5.6135\0.0021)_104 (4.20d)

G*12=(5.3281\0.0026)_106 (4.20e)

G*14=(7.3681\0.0046)_108 (4.20f )

G*16=(1.3969\0.0010)_1011 (4.20g)

G*18=(3.4746\0.0031)_1013 (4.20h)

G*20=(1.0969\0.0011)_1016 (4.20i)
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The central values in (4.20), which are intended as our ``best estimates,'' are
computed using the theoretical value (2.14) for xC.19 The error bars quoted
in (4.20) are upper bounds computed using the triangle inequality, since we
did not bother to compute the covariances among our Monte Carlo
estimates of V �

2n . Of course, for G4* , G6*, G8* , G*10 the estimates (4.20a�d)
are supplanted by the much more precise theoretical values (2.35a�d).

In summary, we have been able to estimate the limiting values V �
2n

with great accuracy; and in the cases where the exact values are known,
our numerical estimates agree with the theoretical predictions within less
than two standard deviations. Our numerical estimates for 2 are compatible
(within less than two standard deviations) with 2=7�4.

5. CONCLUSIONS

We have computed, using results from conformal field theory (CFT),
the exact (except for numerical integration) values of five universal
amplitude ratios characterizing the 2D Ising model at criticality on a
symmetric torus: the correlation-length ratio xC and the magnetization
moment ratios V4 , V6 , V8 and V10 . All except for V4 are new, and we have
improved previous CFT determinations of V4 by three orders of magnitude
(reaching precision similar to that obtained by transfer-matrix approaches).
As a corollary, we have computed the exact values G4*, G6* , G8* and G*10

of the first four dimensionless renormalized 2n-point coupling constants at
criticality on a symmetric torus.

We have checked all these theoretical predictions by means of a high-
precision Monte Carlo simulation. Using finite-size-scaling (FSS) techniques,
we have tried to determine the leading term as well as the correction-to-
scaling terms. We confirm to high precision the theoretically predicted
universal amplitude ratios xC, V4 , V6 , V8 and V10 (error bars �0.060).

The determination of the.leading correction-to-scaling exponent 2 has
proved to be difficult. For the modified correlation length !$, the correc-
tions to FSS are so weak that they are essentially invisible for L�16;
and no reliable conclusions can be obtained from our data for L=4, 6,
8, 12. For the standard correlation length !, the leading correction to
scaling might be 2=7�4, or it might be 2=2 arising from !�!$#
[(L�?) sin(?�L)]&1=1+(?2�6) L&2+ } } } . For the magnetization moment
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obtained by dividing the central value in (4.20) by 1.0052062n&2 and adding (2n&2)_
0.000287 to the fractional error bar. Note that the dominant contribution to the error bar
on G*2n would then come from the uncertainty on xC: for example, we would have G4*=
2.2345\0.0014, G6*=29.199\0.038, G8*=939.97\1.87, etc. in place of (4.20).



ratios V2n we obtain stable results compatible with 2=7�4 within two
standard deviations, in agreement with the theoretical prediction (4.2).

It would be interesting to extend the analytic computation of xC to
other two-dimensional models, in particular those that can be mapped
onto Gaussian models via height representations (see e.g., refs. 111, 112,
78). This work is currently in progress.(113)

APPENDIX A. COMPUTATION OF SPIN-CORRELATOR
INTEGRALS

The computation of xC=limL � � !�L involves computing numerically
the integrals

I1=| d 2z
�4

&=1 |%&(z�2)|
|%1(z)| 1�4 (A.1)

I2=| d 2z
�4

&=1 |%&(z�2)|
|%1(z)| 1�4 cos(2?x1) (A.2)

where z=x1+ix2 and � d 2z=�1
0 �1

0 dx1 dx2 .
Let us consider here I1 , as I2 can be done in a similar fashion. Using

the symmetry properties of the %-functions and their absolute values (see
Appendix B), we reduce the integral to

I1=4 |
1�2

0
|

1�2

0
dx1 dx2

�4
&=1 |%&(z�2)|
|%1(z)|1�4 (A.3)

The integrand contains two pieces: One (coming from &=1) is finite at
z=0 and its integral can be performed safely by standard deterministic
numerical-integration techniques (e.g., Mathematica's NIntegrate ),
yielding

I1, 1#4 |
1�2

0
|

1�2

0
dx1 dx2

|%1(z�2)|
|%1(z)|1�4=0.5234826517\0.0000000001 (A.4)

The other piece (coming from &=2, 3, 4) diverges at z=0 like |%1(z)|&1�4
t

|z|&1�4. This singularity makes numerical integration a bit tricky. Since
%$1(0)=2?'3 [see (B.13)], the simple function

H(z)=4
�4

&=2 |%&(0)|
|2?'3z|1�4 (A.5)
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has exactly the same divergent behavior at z=0. The integral of this func-
tion is given by

4 |
1�2

0
|

1�2

0
dx1 dx2 H(z)=4

�4
&=2 |%&(0)|
(2?'3)1�4 |

1�2

0
|

1�2

0
dx1 dx2

1
(x2

1+x2
2)1�8

=8
�4

&=2 |%&(0)|
(2?'3)1�4 |

?�4

0
d� |

1�(2 cos �)

0
dr r3�4

=
8 } 21�4

7
�4

&=2 |%&(0)|
(2?'3)1�4 |

?�4

0
(cos �)&7�4 d�

r2.95015472419465 (A.6)

Though we were unable to perform exactly the final angular integral, the
integrand cos&7�4 � is regular on the interval [0, ?�4] and so the integral
can be performed by standard numerical-integration techniques.

Finally, we have to integrate the function

4
�4

&=2 |%&(z�2)|
|%1(z)| 1�4 &H(z) (A.7)

This function does not diverge at z=0 (or at any other point in the
integration domain), so its integral can again be performed using standard
techniques. This last integral is 0.007973883019\0.000000000001, so the
final result is

I1=3.4816112589\0.0000000001 (A.8)

The second integral I2 can be performed in the same way [and using
the same auxiliary function H(z)]. The final result is

I2=0.1044359092\0.0000000001 (A.9)

APPENDIX B. THETA FUNCTIONS

We use the following definitions for the Jacobi %-functions:(114, 115)

%1(z, {)#&i :
�

n=&�

(&1)n yn+1�2q(n+1�2)2�2 (B.1a)

=2 :
�

n=0

(&1)n q(n+1�2)2�2 sin(2?(n+ 1
2) z) (B.1b)
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%2(z, {)# :
�

n=&�

yn+1�2q(n+1�2)2�2 (B.2a)

=2 :
�

n=0

q(n+1�2)2�2 cos(2?(n+ 1
2) z) (B.2b)

%3(z, {)# :
�

n=&�

ynqn2�2 (B.3a)

=1+2 :
�

n=1

qn2�2 cos(2?nz) (B.3b)

%4(z, {)# :
�

n=&�

(&1)n ynqn2�2 (B.4a)

=1+2 :
�

n=1

(&1)n qn2�2 cos(2?nz) (B.4b)

where

q=e2?i{ with |q|<1 (B.5a)

y=e2?iz (B.5b)

We sometimes omit the argument { when its value is clear from the con-
text; in particular, in the present paper we have usually {=i. A prime on
%& indicates the derivative with respect to z.

The %-functions satisfy certain symmetry properties

%1(z\1)=&%1(z) (B.6a)

%2(z\1)=&%2(z) (B.6b)

%3(z\1)=%3(z) (B.6c)

%4(z\1)=%4(z) (B.6d)

%1(z\ 1
2)=\%2(z) (B.7a)

%2(z\ 1
2)= �%1(z) (B.7b)

%3(z\ 1
2)=%4(z) (B.7c)

%4(z\ 1
2)=%3(z) (B.7d)

583Universal Amplitude Ratios in Critical 2D Ising Model on a Torus



%1(z\{, {)=&y�1q&1�2%1(z, {) (B.8a)

%2(z\{, {)= y�1q&1�2%2(z, {) (B.8b)

%3(z\{, {)= y�1q&1�2%3(z, {) (B.8c)

%4(z\{, {)=&y�1q&1�2%4(z, {) (B.8d)

%1 \z\
{
2

, {+=\iy�1�2q&1�8%4(z, {) (B.9a)

%2 \z\
{
2

, {+= y�1�2q&1�8%3(z, {) (B.9b)

%3 \z\
{
2

, {+= y�1�2q&1�8%2(z, {) (B.9c)

%4 \z\
{
2

, {+=\iy�1�2q&1�8%1(z, {) (B.9d)

Finally, it is worth noticing that the modulus of a %-function satisfies
the relation

|%&(\x1\ix2)|=|%&(x1+ix2)| (B.10)

for x1 , x2 real and 0�q<1.
The Dedekind '-function is defined as

'({)=q1�24 `
�

n=1

(1&qn) (B.11)

and it satisfies the relations

%2(0, {) %3(0, {) %4(0, {)=2'({)3 (B.12)

%$1(0, {)=2?'({)3 (B.13)
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